14.9 C
New York
Saturday, April 20, 2024

Preparation and PET/CT imaging of implant directed 68Ga-labeled magnetic nanoporous silica nanoparticles | Journal of Nanobiotechnology


  • Walter N, Rupp M, Hinterberger T, Alt V. Prosthetic infections and the rising significance of psychological comorbidities: an epidemiological evaluation for Germany from 2009 by way of 2019. Orthopade. 2021;50(10):859–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Financial burden of periprosthetic joint an infection in the us. J Arthroplasty. 2012;27(8 SUPPL.):61-65.e1.

    Article 
    PubMed 

    Google Scholar
     

  • Springer BD, Cahue S, Etkin CD, Lewallen DG, McGrory BJ. An infection burden in whole hip and knee arthroplasties: a world registry-based perspective. Arthroplast Immediately. 2017;3(2):137–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leta TH, Lygre SHL, Schrama JC, Hallan G, Gjertsen JE, Dale H, et al. Consequence of revision surgical procedure for an infection after whole knee arthroplasty: outcomes of three surgical methods. JBJS Rev. 2019;7(6):1–10.

    Article 

    Google Scholar
     

  • Gundtoft PH, Overgaard S, Schonheyder HC, Moller JK, Kjærsgaard-Andersen P, Pedersen AB. The “true” incidence of surgically handled deep prosthetic joint an infection after 32,896 main whole hip arthroplasties. Acta Orthop. 2015;86(3):326–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupp M, Walter N, Lau E, Worlicek M, Kurtz SM, Alt V. Latest traits in revision knee arthroplasty in Germany. Sci Rep. 2021;11(1):1–7.

    Article 

    Google Scholar
     

  • Izakovicova P, Borens O, Trampuz A. Periprosthetic joint an infection: present ideas and outlook. EFORT Open Rev. 2019;4(7):482–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimke C, Enz A, Bail HJ, Heppt P, Kladny B, von Lewinski G, et al. Analysis of the usual process for the therapy of periprosthetic joint infections (PJI) in Germany—outcomes of a survey throughout the EndoCert initiative. BMC Musculoskelet Disord. 2020;21(1):1–8.

    Article 

    Google Scholar
     

  • Vallabani NVS, Singh S, Karakoti AS. Magnetic nanoparticles: present traits and future points in diagnostics and nanomedicine. Curr Drug Metab. 2018;20(6):457–72.

    Article 

    Google Scholar
     

  • Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in most cancers remedy and analysis. Adv Healthc Mater. 2020;9(9):1–57.

    Article 

    Google Scholar
     

  • Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical functions: a overview. Artif Organs. 2021;45(11):1272–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug supply: functions and traits. Skilled Opin Drug Deliv. 2019;16(1):69–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic nanoparticles for biomedical functions: from the soul of the earth to the deep historical past of ourselves. ACS Appl Bio Mater. 2021;4(8):5839–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, Zeng L, Xiao X, Chen T, Pan Y. Multifunctional magnetic nanoagents for bioimaging and remedy. ACS Appl Bio Mater. 2021;4(2):1066–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamb J, Holland JP. Superior strategies for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med. 2018;59(3):382–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a brand new class of distinction brokers for MR imaging. Radiology. 1990;175(2):489–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham HN, Pham THG, Nguyen DT, Phan QT, Le TTH, Ha PT, et al. Magnetic inductive heating of organs of mouse fashions handled by copolymer coated Fe3O4 nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2017;8(2): 025013.

    Article 

    Google Scholar
     

  • Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, et al. Growth of receptor focused magnetic iron oxide nanoparticles for environment friendly drug supply and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49. https://doi.org/10.1166/jbn.2008.007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, et al. Therapy of infarcted coronary heart tissue by way of the seize and native supply of circulating exosomes by way of antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):1063–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li R, Zhang L, Guo S. Nanomaterial-based immunocapture platforms for the popularity, isolation, and detection of circulating tumor cells. Entrance Bioeng Biotechnol. 2022;10(March):1–24.


    Google Scholar
     

  • Schwaminger SP, Fraga-García P, Clean-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by naked iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lübbe AS, Alexiou C, Bergemann C. Scientific functions of magnetic drug focusing on. J Surg Res. 2001;95(2):200–6.

    Article 
    PubMed 

    Google Scholar
     

  • Bae YH, Park Ok. Focused drug supply to tumors: myths, actuality and risk. J Management Launch. 2011;153(3):198–205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torchilin VP. Drug focusing on. Eur J Pharm Sci. 2000;11:S81-91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obermeier A, Küchler S, Matl FD, Pirzer T, Stemberger A, Mykhaylyk O, et al. Magnetic drug focusing on as new therapeutic choice for the therapy of biomaterial infections. J Biomater Sci Polym Ed. 2012;23(18):2321–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte drawback. Nano Immediately. 2015;10(4):487–510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to enhance focusing on methods in nanomedicine. Chem Soc Rev. 2021;50(9):5397–434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gal N, Lassenberger A, Herrero-Nogareda L, Scheberl A, Charwat V, Kasper C, et al. Interplay of size-tailored PEGylated iron oxide nanoparticles with lipid membranes and cells. ACS Biomater Sci Eng. 2017;3(3):249–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivadasan D, Sultan MH, Madkhali OA, Alessa AA, Alsabei SH. Stealth liposomes (PEGylated) containing an anticancer drug camptothecin: in vitro characterization and in vivo pharmacokinetic and tissue distribution research. Molecules. 2022;27(3):1086.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalil AR, Tobin MP, Discher DE. Suppressing or enhancing macrophage engulfment by way of using CD47 and associated peptides. Bioconjug Chem. 2022;35:1989.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen ZA, Wu SH, Chen P, Chen YP, Mou CY. Important options for mesoporous silica nanoparticles encapsulated into erythrocytes. ACS Appl Mater Interfaces. 2019;11(5):4790–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piao JG, Wang L, Gao F, You YZ, Xiong Y, Yang L. Erythrocyte membrane is another coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal remedy. ACS Nano. 2014;8(10):10414–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, et al. Biodistribution, biocompatibility and focused accumulation of magnetic nanoporous silica nanoparticles as drug provider in orthopedics. J Nanobiotechnology. 2020;18(1):14

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reifenrath J, Janßen HC, Warwas DP, Kietzmann M, Behrens P, Willbold E, et al. Implant-based route of magnetic nanoporous silica nanoparticles: affect of macrophage depletion and an infection. Nanomedicine. 2020;30: 102289.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selander KS, Mönkkönen J, Karhukorpi EK, Härkönen P, Hannuniemi R, Väänänen HK. Traits of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol. 1996;50(5):1127–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Kozicky LK, Sly LM. Depletion and reconstitution of macrophages in mice. Strategies Mol Biol. 2019;1960:101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milne S, King GG. Superior imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis. 2014;6(11):1570–85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polyak A, Ross TL. Nanoparticles for SPECT and PET imaging: in direction of customized drugs and theranostics. Curr Med Chem. 2018;25(34):4328–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karageorgou MA, Vranješ-Djurić S, Radović M, Lyberopoulou A, Antić B, Rouchota M, et al. Gallium-68 labeled iron oxide nanoparticles coated with 2,3-dicarboxypropane-1,1-diphosphonic acid as a possible PET/MR imaging agent: a proof-of-concept research. Distinction Media Mol Imaging. 2017;2017: 6951240

  • Herzog H. PET/MRI: challenges, options and views. Z Med Phys. 2012;22(4):281–98.

    Article 
    PubMed 

    Google Scholar
     

  • Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a brand new method for practical and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas G, Boudon J, Maurizi L, Moreau M, Walker P, Severin I, et al. Revolutionary magnetic nanoparticles for PET/MRI bimodal imaging. ACS Omega. 2019;4(2):2637–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naszályi Nagy L, Polyak A, Mihály J, Szécsényi Á, Szigyártó IC, Czégény ZS, et al. Silica@zirconia@poly(malic acid) nanoparticles: promising nanocarriers for theranostic functions. J Mater Chem B. 2016;4(25):4420–9.

    Article 
    PubMed 

    Google Scholar
     

  • Polyak A, Naszalyi Nagy L, Mihaly J, Görres S, Wittneben A, Leiter I, et al. Preparation and (68)Ga-radiolabeling of porous zirconia nanoparticle platform for PET/CT-imaging guided drug supply. J Pharm Biomed Anal. 2017;137:146–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polyak A, Képes Z, Trencsényi G. Implant imaging: views of nuclear imaging in implant, biomaterial, and stem cell analysis. Bioengineering. 2023;10(5):521.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos MA, Gil M, Marques S, Gano L, Cantinho G, Chaves S. N-carboxyalkyl derivatives of 3-hydroxy-4-pyridinones: synthesis, complexation with Fe(III), Al(III) and Ga(III) and in vivo analysis. J Inorg Biochem. 2002;92(1):43–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faghihi Ok, Moghanian H. Synthesis and characterization of recent optically energetic poly(amide-imide)s containing 1,3,4-oxadiazole moiety in the primary chain. Polym Bull. 2010;65(4):319–32.

    Article 
    CAS 

    Google Scholar
     

  • Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M. FT-IR research of montmorillonite-chitosan nanocomposite supplies. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(4):784–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Wang J. Understanding the amide-II vibrations in β-peptides. J Phys Chem B. 2015;119(47):14831–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thibault-Starzyk F, Payen R, Lavalley JC. IR proof of zeolitic hydroxy insertion in amide formation by the Ritter response. Chem Commun. 1996;23:2667–8.

    Article 

    Google Scholar
     

  • Janßen HC, Warwas DP, Dahlhaus D, Meißner J, Taptimthong P, Kietzmann M, et al. In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant supplies with completely different magnetic properties. J Nanobiotechnology. 2018;16(1):96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge J, Zhang Y, Dong Z, Jia J, Zhu J, Miao X, et al. Initiation of focused nanodrug supply in vivo by a multifunctional magnetic implant. ACS Appl Mater Interfaces. 2017;9(24):20771–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Evaluation of nanoparticle supply to tumours. Nat Rev Mater. 2016;1(5):16014.

    Article 
    CAS 

    Google Scholar
     

  • Torrice M. Does nanomedicine have a supply drawback? ACS Cent Sci. 2016;2(7):434–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of Nanoparticles in drug-delivery methods. Nanomaterials. 2020;10(4):1–18.

    Article 

    Google Scholar
     

  • Moghimi SM, Hunter AC, Murray JC. Lengthy-circulating and target-specific nanoparticles: idea to follow. Pharmacol Rev. 2001;53(2):283–318.

    CAS 
    PubMed 

    Google Scholar
     

  • Frank MM, Fries LF. The function of complement in irritation and phagocytosis. Immunol Immediately. 1991;12(9):322–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • City DA, Rodriguez-Lorenzo L, Balog S, Kinnear C, Rothen-Rutishauser B, Petri-Fink A. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces. 2016;137:39–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle-protein corona complexes govern the organic fates and features of nanoparticles. J Mater Chem B. 2014;2(15):2060–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: smooth and onerous corona. ACS Nano. 2012;6(3):2532–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gómez-Vallejo V, Puigivila M, Plaza-García S, Szczupak B, Piñol R, Murillo JL, et al. PEG-copolymer-coated iron oxide nanoparticles that keep away from the reticuloendothelial system and act as kidney MRI distinction brokers. Nanoscale. 2018;10(29):14153–64.

    Article 
    PubMed 

    Google Scholar
     

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle measurement and floor properties decide the protein corona with attainable implications for organic impacts. Proc Natl Acad Sci U S A. 2008;105(38):14265–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Immediately. 2008;3(1-2):40-47.

    Article 
    CAS 

    Google Scholar
     

  • Liu T, Choi H, Zhou R, Chen IW. RES blockade: a method for reinforcing effectivity of nanoparticle drug. Nano Immediately. 2015;10(1):11–21.

    Article 

    Google Scholar
     

  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona utilizing strategies to quntify trade charges and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104(7):2050–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin CY, Yang CM, Lindén M. Affect of serum focus and floor functionalization on the protein adsorption to mesoporous silica nanoparticles. RSC Adv. 2019;9(58):33912–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amoozgar Z, Yeo Y. Latest advances in stealth coating of nanoparticle drug supply methods. WIREs Nanomed Nanobiotechnol. 2012;4(2):219–33.

    Article 
    CAS 

    Google Scholar
     

  • Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles floor modified by polyethylene glycol (PEG): influences of the corona (PEG chain size and floor density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cauda V, Argyo C, Bein T. Influence of various PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem. 2010;20(39):8693–9.

    Article 
    CAS 

    Google Scholar
     

  • Shim G, Miao W, Ko S, Park GT, Kim JY, Kim MG, et al. Immune-camouflaged graphene oxide nanosheets for destructive regulation of phagocytosis by macrophages. J Mater Chem B. 2017;5(32):6666–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verrecchia T, Spenlehauer G, Bazile DV, Murry-Brelier A, Archimbaud Y, Veillard M. Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers. J Management Launch. 1995;36(1–2):49–61.

    Article 
    CAS 

    Google Scholar
     

  • Mosqueira VCF, Legrand P, Morgat JL, Vert M, Mysiakine E, Gref R, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: results of PEG chain size and density. Pharm Res. 2001;18(10):1411–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles floor modified by polyethylene glycol (PEG). Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishida T, Kiwada H. Accelerated blood clearance of pegylated liposomes after repeated injection. Drug Deliv Syst. 2004;19(6):495–510.

    Article 
    CAS 

    Google Scholar
     

  • Rao L, Xu JH, Cai B, Liu H, Li M, Jia Y, et al. Artificial nanoparticles camouflaged with biomimetic erythrocyte membranes for diminished reticuloendothelial system uptake. Nanotechnology. 2016;27(8): 085106.

    Article 
    PubMed 

    Google Scholar
     

  • Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gheibihayat SM, Jaafari MR, Hatamipour M, Sahebkar A. Enchancment of the pharmacokinetic traits of liposomal doxorubicin utilizing CD47 biomimickry. J Pharm Pharmacol. 2021;73(2):169–77.

    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Yu D, Ge F, Yang L, Wang Q. Fluorescent and mass spectrometric analysis of the phagocytic internalization of a CD47-peptide modified drug-nanocarrier. Anal Bioanal Chem. 2019;411(18):4193–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sobol NB, Korsen JA, Younes A, Edwards KJ, Lewis JS. ImmunoPET imaging of pancreatic tumors with 89Zr-labeled gold nanoparticle-antibody conjugates. Mol Imaging Biol. 2021;23(1):84–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohara Y, Oda T, Yamada Ok, Hashimoto S, Akashi Y, Miyamoto R, et al. Efficient supply of chemotherapeutic nanoparticles by depleting host Kupffer cells. Int J Most cancers. 2012;131(10):2402–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal illness: present standing and future functions. Nat Rev Nephrol. 2016;12(12):738–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhipandito CF, Cheung SH, Lin YH, Wu SH. Atypical renal clearance of nanoparticles bigger than the kidney filtration threshold. Int J Mol Sci. 2021;22(20):11182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellico J, Ruiz-Cabello J, Saiz-Alía M, del Rosario G, Caja S, Montoya M, et al. Quick synthesis and bioconjugation of 68Ga core-doped extraordinarily small iron oxide nanoparticles for PET/MR imaging. Distinction Media Mol Imaging. 2016. 11(3),203-210 https://doi.org/10.1002/cmmi.1681.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madru R, Tran TA, Axelsson J, Ingvar C, Bibic A, Ståhlberg F, et al. (68)Ga-labeled superparamagnetic iron oxide nanoparticles (SPIONs) for multi-modality PET/MR/Cherenkov luminescence imaging of sentinel lymph nodes. Am J Nucl Med Mol Imaging. 2013;4(1):60–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polyak A, Bankstahl JP, Besecke KFW, Hozsa C, Triebert W, Pannem RR, et al. Simplified 89Zr-labeling protocol of oxine (8-hydroxyquinoline) enabling extended monitoring of liposome-based nanomedicines and cells. Pharmaceutics. 2021;13(7):1097.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular nanomedicine in direction of most cancers: 111In-labeled nanoparticles. J Pharm Sci. 2012;101(7):2271–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Starmans LWE, Hummelink MAPM, Rossin R, Kneepkens ECM, Lamerichs R, Donato Ok, et al. 89 Zr- and Fe-labeled polymeric micelles for twin modality PET and T 1 -weighted MR imaging. Adv Healthc Mater. 2015;4(14):2137–45.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles