7.9 C
New York
Thursday, April 18, 2024

The present standing of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces | Journal of Nanobiotechnology


  • Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Floor modification strategies to provide micro/nano-scale topographies on Ti-based implant surfaces for improved osseointegration. Entrance Bioeng Biotechnol. 2022;10: 835008. https://doi.org/10.3389/fbioe.2022.835008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu N, Fu J, Zhao L, Chu PK, Huo Ok. Biofunctional parts integrated nano/microstructured coatings on titanium implants with enhanced osteogenic and antibacterial efficiency. Adv Healthc Mater. 2020;9: e2000681. https://doi.org/10.1002/adhm.202000681.

    Article 
    CAS 

    Google Scholar
     

  • Qian S, Qiao Y, Liu X. Selective biofunctional modification of titanium implants for osteogenic and antibacterial purposes. J Mater Chem B. 2014;2(43):7475–87. https://doi.org/10.1039/c4tb00973h.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarraf M, RezvaniGhomi E, Alipour S, Ramakrishna S, Liana Sukiman N. A state-of-the-art evaluation of the fabrication and traits of titanium and its alloys for biomedical purposes. Biodes Manuf. 2022;5(2):371–95. https://doi.org/10.1007/s42242-021-00170-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao J, Li Y, Li B, Wang X, Li H, Liu S, Liang C, Wang H. Organic and mechanical results of micro-nanostructured titanium floor on an osteoblastic cell line in vitro and osteointegration in vivo. Appl Biochem Biotechnol. 2017;183(1):280–92. https://doi.org/10.1007/s12010-017-2444-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Chang B, He Y, Li Y, Liu J, Zhang Y, Hou Y, Xu B, Li X, Xu M, et al. Orai1 mediated store-operated calcium entry contributing to MC3T3-E1 differentiation on titanium implant with micro/nano-textured topography. Mater Sci Eng C. 2022;133: 112644. https://doi.org/10.1016/j.msec.2022.112644.

    Article 
    CAS 

    Google Scholar
     

  • Wang D, He G, Tian Y, Ren N, Liu W, Zhang X. Twin results of acid etching on cell responses and mechanical properties of porous titanium with controllable open-porous construction. J Biomed Mater Res B Appl Biomater. 2020;108(6):2386–95. https://doi.org/10.1002/jbm.b.34571.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwata N, Nozaki Ok, Horiuchi N, Yamashita Ok, Tsutsumi Y, Miura H, Nagai A. Results of managed micro-/nanosurfaces on osteoblast proliferation. J Biomed Mater Res A. 2017;105(9):2589–96. https://doi.org/10.1002/jbm.a.36118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schliephake H, Scharnweber D. Chemical and organic functionalization of titanium for dental implants. J Mater Chem. 2008;18(21):2404–14. https://doi.org/10.1039/b715355b.

    Article 
    CAS 

    Google Scholar
     

  • Hong Q, Huo S, Tang H, Qu X, Yue B. Good nanomaterials for therapy of biofilm in orthopedic implants. Entrance Bioeng Biotechnol. 2021;9: 694635. https://doi.org/10.3389/fbioe.2021.694635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Losic D. Advancing of titanium medical implants by floor engineering: current progress and challenges. Skilled Opin Drug Deliv. 2021;18(10):1355–78. https://doi.org/10.1080/17425247.2021.1928071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD. Implant osseointegration and the function of microroughness and nanostructures: classes for backbone implants. Acta Biomater. 2014;10(8):3363–71. https://doi.org/10.1016/j.actbio.2014.03.037.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aw MS, Addai-Mensah J, Losic D. Magnetic-responsive supply of drug-carriers utilizing titania nanotube arrays. J Mater Chem. 2012;22(14):6561–3. https://doi.org/10.1039/c2jm16819g.

    Article 
    CAS 

    Google Scholar
     

  • Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, Behrens P, Reifenrath J. Biodistribution, biocompatibility and focused accumulation of magnetic nanoporous silica nanoparticles as drug provider in orthopedics. J Nanobiotechnol. 2020;18(1):14. https://doi.org/10.1186/s12951-020-0578-8.

    Article 
    CAS 

    Google Scholar
     

  • Janßen HC, Warwas DP, Dahlhaus D, Meißner J, Taptimthong P, Kietzmann M, Behrens P, Reifenrath J, Angrisani N. In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant supplies with completely different magnetic properties. J Nanobiotechnol. 2018;16(1):96. https://doi.org/10.1186/s12951-018-0422-6.

    Article 
    CAS 

    Google Scholar
     

  • Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P. Magnetically guided titania nanotubes for site-selective photocatalysis and drug launch. Angew Chem Int Ed. 2009;48(5):969–72. https://doi.org/10.1002/anie.200804429.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Ren S, Zhang X, Yu Y, Liu C, Yang J, Miao L. Security and efficacy of PLGA (Ag–FeO)-coated dental implants in inhibiting micro organism adherence and osteogenic inducement underneath a magnetic discipline. Int J Nanomed. 2018;13:3751–62. https://doi.org/10.2147/IJN.S159860.

    Article 
    CAS 

    Google Scholar
     

  • Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77. https://doi.org/10.1016/j.addr.2009.03.007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aw MS, Losic D. Ultrasound enhanced launch of therapeutics from drug-releasing implants primarily based on titania nanotube arrays. Int J Pharm. 2013;443(1–2):154–62. https://doi.org/10.1016/j.ijpharm.2013.01.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Frank MA, Yang Y, Boccaccini AR, Virtanen S. A novel native drug supply system: superhydrophobic titanium oxide nanotube arrays function the drug reservoir and ultrasonication features because the drug launch set off. Mater Sci Eng C. 2018;82:277–83. https://doi.org/10.1016/j.msec.2017.08.066.

    Article 
    CAS 

    Google Scholar
     

  • Chai MZ, An MW, Zhang XY. Development of a TiO2/MoSe2/CHI coating on dental implants for combating Streptococcus mutans an infection. Mater Sci Eng C. 2021;129:9. https://doi.org/10.1016/j.msec.2021.112416.

    Article 
    CAS 

    Google Scholar
     

  • Faria PEP, Felipucci DNB, Simioni AR, Primo FL, Tedesco AC, Salata LA. Results of photodynamic course of (PDP) in implant osseointegration: a histologic and histometric examine in canines. Clin Implant Dent Relat Res. 2015;17(5):879–90. https://doi.org/10.1111/cid.12204.

    Article 
    PubMed 

    Google Scholar
     

  • Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, Zecchi-Orlandini S, Rossolini GM, Bani D. The consequences of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide floor of dental implants. An in vitro examine. Lasers Med Sci. 2016;31(8):1613–9. https://doi.org/10.1007/s10103-016-2025-5.

    Article 
    PubMed 

    Google Scholar
     

  • Hong L, Liu XM, Tan L, Cui ZD, Yang XJ, Liang YQ, Li ZY, Zhu SL, Zheng YF, Yeung KWK, et al. Fast biofilm elimination on bone implants utilizing near-infrared-activated inorganic semiconductor heterostructures. Adv Healthc Mater. 2019;8(19):11. https://doi.org/10.1002/adhm.201900835.

    Article 
    CAS 

    Google Scholar
     

  • Moon KS, Park YB, Bae JM, Choi EJ, Oh SH. Seen light-mediated sustainable antibacterial exercise and osteogenic performance of Au and Pt multi-coated TiO2 nanotubes. Supplies. 2021;14(20):12. https://doi.org/10.3390/ma14205976.

    Article 
    CAS 

    Google Scholar
     

  • Oh S, Moon Ok-S, Moon J-H, Bae J-M, Jin S. Seen gentle irradiation-mediated drug elution exercise of nitrogen-doped TiO2 nanotubes. J Nanomater. 2013;2013:1–7. https://doi.org/10.1155/2013/802318.

    Article 
    CAS 

    Google Scholar
     

  • Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Picture-sonodynamic antimicrobial chemotherapy through chitosan nanoparticles-indocyanine inexperienced in opposition to polymicrobial periopathogenic biofilms: ex vivo examine on dental implants. Photodiagn Photodyn Ther. 2020;31:7. https://doi.org/10.1016/j.pdpdt.2020.101834.

    Article 
    CAS 

    Google Scholar
     

  • Ren XX, Gao RF, van der Mei HC, Ren YJ, Peterson BW, Busscher HJ. Eradicating infecting micro organism whereas sustaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Appl Mater Interfaces. 2020;12(31):34610–9. https://doi.org/10.1021/acsami.0c08592.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan L, Li J, Liu XM, Cui ZD, Yang XJ, Zhu SL, Li ZY, Yuan XB, Zheng YF, Yeung KWK, et al. Fast biofilm eradication on bone implants utilizing purple phosphorus and near-infrared gentle. Adv Mater. 2018;30(31):10. https://doi.org/10.1002/adma.201801808.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Su Ok, Tan L, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, et al. Fast and extremely efficient noninvasive disinfection by hybrid Ag/CS@MnO nanosheets utilizing near-infrared gentle. ACS Appl Mater Interfaces. 2019;11(16):15014–27. https://doi.org/10.1021/acsami.8b22136.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie XZ, Mao CY, Liu XM, Zhang YZ, Cui ZD, Yang XJ, Yeung KWK, Pan HB, Chu PK, Wu SL. Synergistic micro organism killing by means of photodynamic and bodily actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces. 2017;9(31):26417–28. https://doi.org/10.1021/acsami.7b06702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu JW, Zhou XM, Gao ZD, Tune YY, Schmuki P. Seen-light-triggered drug launch from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed. 2016;55(2):593–7. https://doi.org/10.1002/anie.201508710.

    Article 

    Google Scholar
     

  • Sirivisoot S, Pareta R, Webster TJ. Electrically managed drug launch from nanostructured polypyrrole coated on titanium. Nanotechnology. 2011;22(8):15. https://doi.org/10.1088/0957-4484/22/8/085101.

    Article 
    CAS 

    Google Scholar
     

  • Shi XW, Wu HP, Li YY, Wei XQ, Du YM. Electrical indicators guided entrapment and managed launch of antibiotics on titanium floor. J Biomed Mater Res Half A. 2013;101(5):1373–8. https://doi.org/10.1002/jbm.a.34432.

    Article 
    CAS 

    Google Scholar
     

  • Gulati Ok, Maher S, Chandrasekaran S, Findlay DM, Losic D. Conversion of titania (TiO) into conductive titanium (Ti) nanotube arrays for mixed drug-delivery and electrical stimulation remedy. J Mater Chem B. 2016;4(3):371–5. https://doi.org/10.1039/c5tb02108a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Xie C, Liu Y, Zhang F, Xiao X. pH-responsive drug launch system of Cu2+-modified ammoniated TiO2 nanotube arrays. Mater Lett. 2018;215:95–8. https://doi.org/10.1016/j.matlet.2017.12.080.

    Article 
    CAS 

    Google Scholar
     

  • Zhou WH, Jia ZJ, Xiong P, Yan JL, Li M, Cheng Y, Zheng YF. Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with environment friendly and sustained antibacterial properties. Mater Sci Eng C. 2018;90:693–705. https://doi.org/10.1016/j.msec.2018.04.069.

    Article 
    CAS 

    Google Scholar
     

  • Yan JL, Xia DD, Zhou WH, Li YY, Xiong P, Li QY, Wang P, Li M, Zheng YF, Cheng Y. pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial capacity, osteogenesis, and angiogenesis. Acta Biomater. 2020;115:220–34. https://doi.org/10.1016/j.actbio.2020.07.062.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang YM, Liu XM, Mao CY, Liu XM, Cui ZD, Yang XJ, Yeung KWK, Zheng YF, Wu SL. An infection-prevention on Ti implants by managed drug launch from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C. 2018;85:214–24. https://doi.org/10.1016/j.msec.2017.12.034.

    Article 
    CAS 

    Google Scholar
     

  • Wang TT, Liu XM, Zhu YZ, Cui ZD, Yang XJ, Pan HB, Yeung KWK, Wu SL. Metallic ion coordination polymer-capped pH-triggered drug launch system on titania nanotubes for enhancing self-antibacterial functionality of Ti implants. ACS Biomater Sci Eng. 2017;3(5):816–25. https://doi.org/10.1021/acsbiomaterials.7b00103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong YW, Ye H, Liu Y, Xu LH, Wu ZS, Hu XH, Ma JF, Pathak JL, Liu JS, Wu G. pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic method to regulate peri-implant an infection. Colloid Surf B Biointerfaces. 2017;158:127–36. https://doi.org/10.1016/j.colsurfb.2017.06.034.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng YH, Qiao YB, Shen P, Gao B, Liu XH, Kong XW, Zhang SF, Wu J. Fabrication and in vitro organic exercise of useful pH-sensitive double-layered nanoparticles for dental implant utility. J Biomater Appl. 2020;34(10):1409–21. https://doi.org/10.1177/0885328220903615.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Z, Huang SZ, Lan SX, Xiong HZ, Tao BL, Ding Y, Liu YS, Liu P, Cai KY. Floor engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo. J Mat Chem B. 2018;6(48):8090–104. https://doi.org/10.1039/c8tb01918e.

    Article 
    CAS 

    Google Scholar
     

  • Yu YL, Ran QC, Shen XK, Zheng H, Cai KY. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloid Surf B Biointerfaces. 2020;185:10. https://doi.org/10.1016/j.colsurfb.2019.110592.

    Article 
    CAS 

    Google Scholar
     

  • Fischer NG, Chen X, Astleford-Hopper Ok, He JH, Mullikin AF, Mansky KC, Aparicio C. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored units. Mater Sci Eng C. 2021;125:11. https://doi.org/10.1016/j.msec.2021.112108.

    Article 
    CAS 

    Google Scholar
     

  • Ding Y, Hao YS, Yuan Z, Tao BL, Chen MW, Lin CC, Liu P, Cai KY. A dual-functional implant with an enzyme-responsive impact for bacterial an infection remedy and tissue regeneration. Biomater Sci. 2020;8(7):1840–54. https://doi.org/10.1039/c9bm01924c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourgat Y, Mikolai C, Stiesch M, Klahn P, Menzel H. Enzyme-responsive nanoparticles and coatings comprised of alginate/peptide ciprofloxacin conjugates as drug launch system. Antibiotics. 2021;10(6):16. https://doi.org/10.3390/antibiotics10060653.

    Article 
    CAS 

    Google Scholar
     

  • Su Ok, Tan L, Liu XM, Cui ZD, Zheng YF, Li B, Han Y, Li ZY, Zhu SL, Liang YQ, et al. Fast photo-sonotherapy for medical therapy of bacterial contaminated bone implants by creating oxygen deficiency utilizing sulfur doping. ACS Nano. 2020;14(2):2077–89. https://doi.org/10.1021/acsnano.9b08686.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their purposes. Mater Immediately Bio. 2019;2: 100017. https://doi.org/10.1016/j.mtbio.2019.100017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Good dental supplies for antimicrobial purposes. Bioact Mater. 2023;24:1–19. https://doi.org/10.1016/j.bioactmat.2022.12.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayasree A, Ivanovski S, Gulati Ok. ON or OFF: triggered therapies from anodized nano-engineered titanium implants. J Management Launch. 2021;333:521–35. https://doi.org/10.1016/j.jconrel.2021.03.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Huang J-Y, Li H-Q, Chen Z, Zhao AZ-J, Wang Y, Zhang Ok-Q, Solar H-T, Al-Deyab SS, Lai Y-Ok. TiO2 nanotube platforms for good drug supply: a evaluation. Int J Nanomed. 2016;11:4819–34.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Wei C, Lv Y. Preparation and utility of magnetic responsive supplies in bone tissue engineering. Curr Stem Cell Res Ther. 2020;15(5):428–40. https://doi.org/10.2174/1574888X15666200101122505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khursheed R, Dua Ok, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, et al. Biomedical purposes of metallic nanoparticles in most cancers: present standing and future views. Biomed Pharmacother. 2022;150: 112951. https://doi.org/10.1016/j.biopha.2022.112951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agnihotri R, Gaur S, Albin S. Nanometals in dentistry: purposes and toxicological implications—a scientific evaluation. Biol Hint Elem Res. 2020;197(1):70–88. https://doi.org/10.1007/s12011-019-01986-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su EP, Justin DF, Pratt CR, Sarin VK, Nguyen VS, Oh S, Jin S. Results of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J. 2018;100-B(1 Suppl A):9–16. https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0551.R1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati Ok, Maher S, Findlay DM, Losic D. Titania nanotubes for orchestrating osteogenesis on the bone-implant interface. Nanomedicine. 2016;11(14):1847–64. https://doi.org/10.2217/nnm-2016-0169.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linsebigler AL, Lu GQ, Yates JT. Photocatalysis on TiO2 surfaces—ideas, mechanisms, and chosen outcomes. Chem Rev. 1995;95(3):735–58. https://doi.org/10.1021/cr00035a013.

    Article 
    CAS 

    Google Scholar
     

  • Kunrath MF, Hubler R, Shinkai RSA, Teixeira ER. Software of TiO2 nanotubes as a drug supply system for biomedical implants: a essential overview. ChemistrySelect. 2018;3(40):11180–9. https://doi.org/10.1002/slct.201801459.

    Article 
    CAS 

    Google Scholar
     

  • Bariana M, Aw MS, Moore E, Voelcker NH, Losic D. Radiofrequency-triggered launch for on-demand supply of therapeutics from titania nanotube drug-eluting implants. Nanomedicine. 2014;9(8):1263–75. https://doi.org/10.2217/nnm.13.93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorenzetti M, Biglino D, Novak S, Kobe S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C. 2014;37:390–8. https://doi.org/10.1016/j.msec.2014.01.029.

    Article 
    CAS 

    Google Scholar
     

  • Zhang GN, Yang YQ, Shi J, Yao XH, Chen WY, Wei XC, Zhang XY, Chu PK. Close to-infrared gentle II-assisted fast biofilm elimination platform for bone implants at gentle temperature. Biomaterials. 2021;269:14. https://doi.org/10.1016/j.biomaterials.2020.120634.

    Article 
    CAS 

    Google Scholar
     

  • Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, Scherberich A. Magnetic nanocomposite hydrogels and static magnetic discipline stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials. 2019;223: 119468. https://doi.org/10.1016/j.biomaterials.2019.119468.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Delicate and selective detection of Mucin1 in pancreatic most cancers utilizing hybridization chain response with the help of FeO@polydopamine nanocomposites. J Nanobiotechnol. 2022;20(1):94. https://doi.org/10.1186/s12951-022-01289-w.

    Article 
    CAS 

    Google Scholar
     

  • Guo Y-P, Lengthy T, Tang S, Guo Y-J, Zhu Z-A. Hydrothermal fabrication of magnetic mesoporous carbonated hydroxyapatite microspheres: biocompatibility, osteoinductivity, drug supply property and bactericidal property. J Mater Chem B. 2014;2(19):2899–909. https://doi.org/10.1039/c3tb21829e.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Y, Chen J, Ding TX, Mao MT, Zhu SB, Zhou JH, Zhang L, Han Y. Constructing biointegration of Fe2O3–FeOOH coated titanium implant by regulating NIR irradiation in an contaminated mannequin. Bioact Mater. 2022;8:1–11. https://doi.org/10.1016/j.bioactmat.2021.06.029.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M-H, Yamayoshi I, Mathew S, Lin H, Nayfach J, Simon SI. Magnetic nanoparticle focused hyperthermia of cutaneous Staphylococcus aureus an infection. Ann Biomed Eng. 2013;41(3):598–609. https://doi.org/10.1007/s10439-012-0698-x.

    Article 
    PubMed 

    Google Scholar
     

  • Brennan SA, NíFhoghlú C, Devitt BM, O’Mahony FJ, Brabazon D, Walsh A. Silver nanoparticles and their orthopaedic purposes. Bone Joint J. 2015;97-B(5):582–9. https://doi.org/10.1302/0301-620X.97B5.33336.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90. https://doi.org/10.1021/nn800596w.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chrastina A, Schnitzer JE. Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomed. 2010;5:653–9. https://doi.org/10.2147/IJN.S11677.

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, et al. Antibacterial exercise, inflammatory response, coagulation and cytotoxicity results of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2012;8(3):328–36. https://doi.org/10.1016/j.nano.2011.06.014.

    Article 
    CAS 

    Google Scholar
     

  • Yamaguchi M. Function of dietary zinc within the prevention of osteoporosis. Mol Cell Biochem. 2010;338(1–2):241–54. https://doi.org/10.1007/s11010-009-0358-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teow S-Y, Wong MM-T, Yap H-Y, Peh S-C, Shameli Ok. Bactericidal properties of plants-derived steel and steel oxide nanoparticles (NPs). Molecules. 2018;23(6):1366. https://doi.org/10.3390/molecules23061366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–84. https://doi.org/10.1152/physrev.00035.2014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Yang Y, Qing YA, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP antibacterial and osteogenesis properties in orthopedic purposes: a evaluation. Int J Nanomed. 2020;15:6247–62. https://doi.org/10.2147/IJN.S262876.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial exercise, osteogenesis and corrosion resistance. J Nanobiotechnol. 2021;19(1):353. https://doi.org/10.1186/s12951-021-01099-6.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Ku S, Weibel JA, Ximenes E, Liu X, Ladisch M, Garimella SV. Enhanced antimicrobial efficacy of bimetallic porous CuO microspheres adorned with Ag nanoparticles. ACS Appl Mater Interfaces. 2017;9(45):39165–73. https://doi.org/10.1021/acsami.7b11364.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan EJ, Ryan AJ, González-Vázquez A, Philippart A, Ciraldo FE, Hobbs C, Nicolosi V, Boccaccini AR, Kearney CJ, O’Brien FJ. Collagen scaffolds functionalised with copper-eluting bioactive glass cut back an infection and improve osteogenesis and angiogenesis each in vitro and in vivo. Biomaterials. 2019;197:405–16. https://doi.org/10.1016/j.biomaterials.2019.01.031.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Kong D, Hsu P-C, Yuan H, Lee H-W, Liu Y, Wang H, Wang S, Yan Ok, Lin D, et al. Fast water disinfection utilizing vertically aligned MoS nanofilms and visual gentle. Nat Nanotechnol. 2016;11(12):1098–104. https://doi.org/10.1038/nnano.2016.138.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Z, Tao BL, He Y, Liu J, Lin CC, Shen XK, Yu YL, Mu CY, Liu P, Cai KY. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property through intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials. 2019;217:17. https://doi.org/10.1016/j.biomaterials.2019.119290.

    Article 
    CAS 

    Google Scholar
     

  • Zhu M, Liu XM, Tan L, Cui ZD, Liang YQ, Li ZY, Yeung KWK, Wu SL. Picture-responsive chitosan/Ag/MoS2 for fast bacteria-killing. J Hazard Mater. 2020;383:10. https://doi.org/10.1016/j.jhazmat.2019.121122.

    Article 
    CAS 

    Google Scholar
     

  • Farghali RA, Fekry AM, Ahmed RA, Elhakim HKA. Corrosion resistance of Ti modified by chitosan-gold nanoparticles for orthopedic implantation. Int J Biol Macromol. 2015;79:787–99. https://doi.org/10.1016/j.ijbiomac.2015.04.078.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, Dubey SK, Kesharwani P. Current advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586: 119596. https://doi.org/10.1016/j.ijpharm.2020.119596.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A gold/silver hybrid nanoparticle for therapy and photoacoustic imaging of bacterial an infection. ACS Nano. 2018;12(6):5615–25. https://doi.org/10.1021/acsnano.8b01362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Solar J, Li W, Dong B, Tune Y, Xu W, Zhou Y, Wang L. Engineering nanotubular titania with gold nanoparticles for antibiofilm enhancement and mushy tissue therapeutic promotion. J Electroanal Chem. 2020;871: 114362. https://doi.org/10.1016/j.jelechem.2020.114362.

    Article 
    CAS 

    Google Scholar
     

  • Ko W-Ok, Heo DN, Moon H-J, Lee SJ, Bae MS, Lee JB, Solar I-C, Jeon HB, Park HK, Kwon IK. The impact of gold nanoparticle dimension on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. https://doi.org/10.1016/j.jcis.2014.08.058.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qoreishi M, Panahi M, Dorodi O, Ghanbari N, Jousheghan SS. Involvement of NF-κB/NLRP3 axis within the development of aseptic loosening of complete joint arthroplasties: a evaluation of molecular mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(7):757–67. https://doi.org/10.1007/s00210-022-02232-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulati Ok, Scimeca J-C, Ivanovski S, Verron E. Double-edged sword: therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Immediately. 2021;26(11):2734–42. https://doi.org/10.1016/j.drudis.2021.07.004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunrath MF, Campos MM. Metallic-nanoparticle launch methods for biomedical implant surfaces: effectiveness and security. Nanotoxicology. 2021;15(6):721–39. https://doi.org/10.1080/17435390.2021.1915401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparability of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles primarily based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34. https://doi.org/10.1021/nn800511k.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leroux MM, Doumandji Z, Chézeau L, Gaté L, Nahle S, Hocquel R, Zhernovkov V, Migot S, Ghanbaja J, Bonnet C, et al. Toxicity of TiO2 nanoparticles: validation of other fashions. Int J Mol Sci. 2020;21(14):4855. https://doi.org/10.3390/ijms21144855.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Current insights into autophagy and metals/nanoparticles publicity. Toxicol Res. 2023;39(3):355–72. https://doi.org/10.1007/s43188-023-00184-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma N, Jha S. Amorphous nanosilica induced toxicity, irritation and innate immune responses: a essential evaluation. Toxicology. 2020;441: 152519. https://doi.org/10.1016/j.tox.2020.152519.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim T-H, Kim M, Park H-S, Shin US, Gong M-S, Kim H-W. Dimension-dependent mobile toxicity of silver nanoparticles. J Biomed Mater Res A. 2012;100(4):1033–43. https://doi.org/10.1002/jbm.a.34053.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niikura Ok, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino Ok, Ninomiya T, et al. Gold nanoparticles as a vaccine platform: affect of dimension and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38. https://doi.org/10.1021/nn3057005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao H, Liu X, Meng F, Chu PK. Organic actions of silver nanoparticles embedded in titanium managed by micro-galvanic results. Biomaterials. 2011;32(3):693–705. https://doi.org/10.1016/j.biomaterials.2010.09.066.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK. Synergistic results of twin Zn/Ag ion implantation in osteogenic exercise and antibacterial capacity of titanium. Biomaterials. 2014;35(27):7699–713. https://doi.org/10.1016/j.biomaterials.2014.05.074.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crasto GJ, Kartner N, Reznik N, Spatafora MV, Chen H, Williams R, Burns PN, Clokie C, Manolson MF, Peel SAF. Managed bone formation utilizing ultrasound-triggered launch of BMP-2 from liposomes. J Management Launch. 2016;243:99–108. https://doi.org/10.1016/j.jconrel.2016.09.032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salari N, Rasoulpoor S, Valipour E, Mansouri Ok, Bartina Y, Dokaneheifard S, Mohammadi M, Abam F. Liposomes, new carriers for supply of genes and anticancer medication: a scientific evaluation. Anticancer Medicine. 2022;33(1):e9–20. https://doi.org/10.1097/CAD.0000000000001144.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghav A, Jeong G-B. A scientific evaluation on the modifications of extracellular vesicles: a revolutionized instrument of nano-biotechnology. J Nanobiotechnol. 2021;19(1):459. https://doi.org/10.1186/s12951-021-01219-2.

    Article 

    Google Scholar
     

  • Kumari Ok, Sharma PK, Malviya R. Formulation-development and analysis of polysorbate-phospholipid blended micelles of piperine loaded with azithromycin. Biointerface Res Appl Chem. 2020;10(5):6128–38. https://doi.org/10.33263/briac105.61286138.

    Article 
    CAS 

    Google Scholar
     

  • Albayaty YN, Thomas N, Jambhrunkar M, Al-Hawwas M, Kral A, Thorn CR, Prestidge CA. Enzyme responsive copolymer micelles improve the anti-biofilm efficacy of the antiseptic chlorhexidine. Int J Pharm. 2019;566:329–41. https://doi.org/10.1016/j.ijpharm.2019.05.069.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng Y, Wang X, Liu Y, Xu Y, Zhang J, Huang F, Li B, Miao Y, Solar Y, Li Y. Twin-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia remedy. Acta Biomater. 2021;119:323–36. https://doi.org/10.1016/j.actbio.2020.10.036.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Web optimization S-J, Lee S-Y, Choi S-J, Kim H-W. Tumor-targeting co-delivery of drug and gene from temperature-triggered micelles. Macromol Biosci. 2015;15(9):1198–204. https://doi.org/10.1002/mabi.201500137.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alven S, Aderibigbe BA. The therapeutic efficacy of dendrimer and micelle formulations for breast most cancers therapy. Pharmaceutics. 2020;12(12):1212. https://doi.org/10.3390/pharmaceutics12121212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira-Santos R, Lima M, Gomes LC, Mergulhão FJ. Antimicrobial coatings primarily based on chitosan to forestall implant-associated infections: a scientific evaluation. iScience. 2021;24(12): 103480. https://doi.org/10.1016/j.isci.2021.103480.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G. ROS-responsive chitosan coated magnetic iron oxide nanoparticles as potential autos for focused drug supply in most cancers remedy. Int J Nanomed. 2020;15:3333–46. https://doi.org/10.2147/IJN.S249240.

    Article 
    CAS 

    Google Scholar
     

  • Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric nanoparticles-loaded hydrogels for biomedical purposes: a scientific evaluation on in vivo findings. Polymers. 2022;14(5):1010. https://doi.org/10.3390/polym14051010.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Zhang X, Bu X, An Y, Bi H, Zhao Z. The appliance of cartilage tissue engineering with cell-laden hydrogel in cosmetic surgery: a scientific evaluation. Tissue Eng Regen Med. 2022;19(1):1–9. https://doi.org/10.1007/s13770-021-00394-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Zhi M, Feng Z, Gao P, Yuan Y, Zhang C, Wang Y, Dong A. Sustained co-delivery of ibuprofen and fundamental fibroblast progress issue by thermosensitive nanoparticle hydrogel as early native therapy of peri-implantitis. Int J Nanomed. 2019;14:1347–58. https://doi.org/10.2147/IJN.S190781.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Current advances of stimuli-responsive polysaccharide hydrogels in supply methods: a evaluation. J Agric Meals Chem. 2022. https://doi.org/10.1021/acs.jafc.2c01080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Su Y, Wu S, Shen J. Native photothermal/photodynamic synergistic antibacterial remedy primarily based on two-dimensional BP@CQDs triggered by single NIR gentle supply. Photodiagn Photodyn Ther. 2022;39: 102905. https://doi.org/10.1016/j.pdpdt.2022.102905.

    Article 
    CAS 

    Google Scholar
     

  • Zheng H, Li H, Deng H, Fang W, Huang X, Qiao J, Tong Y. Close to infrared light-responsive and drug-loaded black phosphorus nanosheets for antibacterial purposes. Colloids Surf B Biointerfaces. 2022;214: 112433. https://doi.org/10.1016/j.colsurfb.2022.112433.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mangadlao JD, Santos CM, Felipe MJL, de Leon ACC, Rodrigues DF, Advincula RC. On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett movies. Chem Commun. 2015;51(14):2886–9. https://doi.org/10.1039/c4cc07836e.

    Article 
    CAS 

    Google Scholar
     

  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls in opposition to micro organism. ACS Nano. 2010;4(10):5731–6. https://doi.org/10.1021/nn101390x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W. Nanotechnology in plant illness administration: DNA-directed silver nanoparticles on graphene oxide as an antibacterial in opposition to Xanthomonas perforans. ACS Nano. 2013;7(10):8972–80. https://doi.org/10.1021/nn4034794.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadrezaei D, Golzar H, Rezai Rad M, Omidi M, Rashedi H, Yazdian F, Khojasteh A, Tayebi L. In vitro impact of graphene buildings as an osteoinductive think about bone tissue engineering: a scientific evaluation. J Biomed Mater Res A. 2018;106(8):2284–343. https://doi.org/10.1002/jbm.a.36422.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park H, Park H-J, Kim JA, Lee SH, Kim JH, Yoon J, Park TH. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia utilizing superparamagnetic nanoparticles. J Microbiol Strategies. 2011;84(1):41–5. https://doi.org/10.1016/j.mimet.2010.10.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, Qiu X, Gooding JJ, Bai Y, Xiao J, et al. Therapy of infarcted coronary heart tissue through the seize and native supply of circulating exosomes by means of antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4(11):1063–75. https://doi.org/10.1038/s41551-020-00637-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shuang S, Zhang Z. The impact of annealing therapy and atom layer deposition to Au/Pt nanoparticles-decorated TiO2 nanorods as photocatalysts. Molecules. 2018;23(3):525. https://doi.org/10.3390/molecules23030525.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu Y, Mo A. A evaluation on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical purposes. Nanoscale Res Lett. 2018;13(1):187. https://doi.org/10.1186/s11671-018-2597-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun H-M, Ahn S-J, Park Ok-R, Kim M-J, Kim J-J, Jin G-Z, Kim H-W, Kim E-C. Magnetic nanocomposite scaffolds mixed with static magnetic discipline within the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 2016;85:88–98. https://doi.org/10.1016/j.biomaterials.2016.01.035.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge Ok. Remoted nuclei adapt to drive and reveal a mechanotransduction pathway within the nucleus. Nat Cell Biol. 2014;16(4):376–81. https://doi.org/10.1038/ncb2927.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. Results of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 2003;82(12):962–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu Ok-H, Ou Ok-L, Lee S-Y, Lin C-T, Chang W-J, Chen C-C, Huang H-M. Static magnetic fields promote osteoblast-like cells differentiation through growing the membrane rigidity. Ann Biomed Eng. 2007;35(11):1932–9.

    Article 
    PubMed 

    Google Scholar
     

  • Marędziak M, Marycz Ok, Smieszek A, Lewandowski D, Toker NY. The affect of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell Dev Biol Anim. 2014;50(6):562–71. https://doi.org/10.1007/s11626-013-9730-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim E-C, Leesungbok R, Lee S-W, Lee H-W, Park SH, Mah S-J, Ahn S-J. Results of reasonable depth static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics. 2015;36(4):267–76. https://doi.org/10.1002/bem.21903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang J, Lin S, Dong L, Cheng Ok, Weng W. Magnetically actuated mechanical stimuli on FeO/mineralized collagen coatings to boost osteogenic differentiation of the MC3T3-E1 cells. Acta Biomater. 2018;71:49–60. https://doi.org/10.1016/j.actbio.2018.03.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng J, Zhang Y, Qi X, Kong H, Wang C, Xu Z, Xie S, Gu N, Xu H. Paramagnetic nanofibrous composite movies improve the osteogenic responses of pre-osteoblast cells. Nanoscale. 2010;2(12):2565–9. https://doi.org/10.1039/c0nr00178c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Santis R, Russo A, Gloria A, D’Amora U, Russo T, Panseri S, Sandri M, Tampieri A, Marcacci M, Dediu VA, et al. In direction of the design of 3D fiber-deposited poly(ε-caprolactone)/lron-doped hydroxyapatite nanocomposite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol. 2015;11(7):1236–46.

    Article 
    PubMed 

    Google Scholar
     

  • Fini M, Giavaresi G, Carpi A, Nicolini A, Setti S, Giardino R. Results of pulsed electromagnetic fields on articular hyaline cartilage: evaluation of experimental and medical research. Biomed Pharmacother. 2005;59(7):388–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincenzi F, Targa M, Corciulo C, Gessi S, Merighi S, Setti S, Cadossi R, Goldring MB, Borea PA, Varani Ok. Pulsed electromagnetic fields elevated the anti-inflammatory impact of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS ONE. 2013;8(5): e65561. https://doi.org/10.1371/journal.pone.0065561.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, An Y, Li F, Li D, Jing D, Guo T, Luo E, Ma C. The consequences of pulsed electromagnetic discipline on the features of osteoblasts on implant surfaces with completely different topographies. Acta Biomater. 2014;10(2):975–85. https://doi.org/10.1016/j.actbio.2013.10.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sekeroğlu V, Akar A, Sekeroğlu ZA. Cytotoxic and genotoxic results of high-frequency electromagnetic fields (GSM 1800 MHz) on immature and mature rats. Ecotoxicol Environ Saf. 2012;80:140–4. https://doi.org/10.1016/j.ecoenv.2012.02.028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L, Vassalli M, Gavazzo P. Electro-magnetic discipline promotes osteogenic differentiation of BM-hMSCs by means of a selective motion on Ca(2+)-related mechanisms. Sci Rep. 2015;5:13856. https://doi.org/10.1038/srep13856.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou P, Wu J, Xia Y, Yuan Y, Zhang H, Xu S, Lin Ok. Loading BMP-2 on nanostructured hydroxyapatite microspheres for fast bone regeneration. Int J Nanomed. 2018;13:4083–92. https://doi.org/10.2147/IJN.S158280.

    Article 
    CAS 

    Google Scholar
     

  • Singh RK, Patel KD, Lee JH, Lee E-J, Kim J-H, Kim T-H, Kim H-W. Potential of magnetic nanofiber scaffolds with mechanical and organic properties relevant for bone regeneration. PLoS ONE. 2014;9(4): e91584. https://doi.org/10.1371/journal.pone.0091584.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, et al. Multifunctional 3D-printed magnetic polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2021;13(21):3825. https://doi.org/10.3390/polym13213825.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Ok, Liu S, Xue Y, Zhang L, Han Y. A superparamagnetic FeO–TiO composite coating on titanium by micro-arc oxidation for percutaneous implants. J Mater Chem B. 2019;7(34):5265–76. https://doi.org/10.1039/c9tb01096c.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical purposes. Adv Healthc Mater. 2018;7(5):1700845. https://doi.org/10.1002/adhm.201700845.

    Article 
    CAS 

    Google Scholar
     

  • Fasciani C, Silvero MJ, Anghel MA, Argüello GA, Becerra MC, Scaiano JC. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial exercise, and long-term stability. J Am Chem Soc. 2014;136(50):17394–7. https://doi.org/10.1021/ja510435u.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabiscol E, Tamarit J, Ros J. Oxidative stress in micro organism and protein harm by reactive oxygen species. Int Microbiol. 2000;3(1):3–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Mao C, Zhu W, Xiang Y, Zhu Y, Shen J, Liu X, Wu S, Cheung KMC, Yeung KWK. Enhanced near-infrared photocatalytic eradication of MRSA biofilms and osseointegration utilizing oxide perovskite-based P–N heterojunction. Adv Sci. 2021;8(15): e2002211. https://doi.org/10.1002/advs.202002211.

    Article 
    CAS 

    Google Scholar
     

  • Yang TT, Wang DH, Liu XY. Assembled gold nanorods for the photothermal killing of micro organism. Colloid Surf B-Biointerfaces. 2019;173:833–41. https://doi.org/10.1016/j.colsurfb.2018.10.060.

    Article 
    CAS 

    Google Scholar
     

  • Sang S, Guo G, Yu J, Zhang X. Antibacterial utility of gentamicin-silk protein coating with good launch perform on titanium, polyethylene, and AlO supplies. Mater Sci Eng C. 2021;124: 112069. https://doi.org/10.1016/j.msec.2021.112069.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, Ren Y, Shi L. Floor-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing effectivity in staphylococcal biofilms. ACS Nano. 2016;10(4):4779–89. https://doi.org/10.1021/acsnano.6b01370.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wadhwa R, Lagenaur CF, Cui XT. Electrochemically managed launch of dexamethasone from conducting polymer polypyrrole coated electrode. J Management Launch. 2006;110(3):531–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Qu M, Zhong P, Zeng Y, Wang J, Zhang Q, Wang T, Liu D, Yang L, Zhou J, et al. Anti-inflammatory and anti-oxidant exercise of ultra-short wave diathermy on LPS-induced rat lung damage. Bull Exp Biol Med. 2022;172(4):423–9. https://doi.org/10.1007/s10517-022-05407-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Z, Wang X, Zhou Y, Xu Q. Impact of Shujin Xiaotong capsules mixed with ultrashort wave remedy on ache and inflammatory cytokines in sufferers with continual knee osteoarthritis. Am J Transl Res. 2021;13(7):8085–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Röschmann P. Radiofrequency penetration and absorption within the human physique: limitations to high-field whole-body nuclear magnetic resonance imaging. Med Phys. 1987;14(6):922–31.

    Article 
    PubMed 

    Google Scholar
     

  • Sagoo NS, Haider AS, Chen AL, Vannabouathong C, Larsen Ok, Sharma R, Palmisciano P, Alamer OB, Igbinigie M, Wells DB, et al. Radiofrequency ablation for spinal osteoid osteoma: a scientific evaluation of security and therapy outcomes. Surg Oncol. 2022;41: 101747. https://doi.org/10.1016/j.suronc.2022.101747.

    Article 
    PubMed 

    Google Scholar
     

  • Pastrak M, Visnjevac O, Visnjevac T, Ma F, Abd-Elsayed A. Security of standard and pulsed radiofrequency lesions of the dorsal root entry zone complicated (DREZC) for interventional ache administration: a scientific evaluation. Ache Ther. 2022;11(2):411–45. https://doi.org/10.1007/s40122-022-00378-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu L, Li Y, Si H, Zeng Y, Li M, Liu Y, Shen B. Radiofrequency ablation in cooled monopolar or standard bipolar modality yields extra helpful short-term medical outcomes versus different therapies for knee osteoarthritis: a scientific evaluation and community meta-analysis of randomized managed trials. Arthroscopy. 2022. https://doi.org/10.1016/j.arthro.2022.01.048.

    Article 
    PubMed 

    Google Scholar
     

  • Hu D, Li H, Wang B, Ye Z, Lei W, Jia F, Jin Q, Ren Ok-F, Ji J. Floor-adaptive gold nanoparticles with efficient adherence and enhanced photothermal ablation of methicillin-resistant staphylococcus aureus biofilm. ACS Nano. 2017;11(9):9330–9. https://doi.org/10.1021/acsnano.7b04731.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gbejuade HO, Lovering AM, Webb JC. The function of microbial biofilms in prosthetic joint infections. Acta Orthop. 2015;86(2):147–58. https://doi.org/10.3109/17453674.2014.966290.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maki DG, Tambyah PA. Engineering out the danger for an infection with urinary catheters. Emerg Infect Dis. 2001;7(2):342–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnasami Z, Carlton D, Bimbo L, Taylor ME, Balkovetz DF, Barker J, Allon M. Administration of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock answer. Kidney Int. 2002;61(3):1136–42.

    Article 
    PubMed 

    Google Scholar
     

  • Chodak GW, Plaut ME. Use of systemic antibiotics for prophylaxis in surgical procedure: a essential evaluation. Arch Surg. 1977;112(3):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rehman IU, Asad MM, Bukhsh A, Ali Z, Ata H, Dujaili JA, Blebil AQ, Khan TM. Data and follow of pharmacists towards antimicrobial stewardship in Pakistan. Pharmacy. 2018;6(4):116. https://doi.org/10.3390/pharmacy6040116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic therapy of biofilm infections. APMIS. 2017;125(4):304–19. https://doi.org/10.1111/apm.12673.

    Article 
    PubMed 

    Google Scholar
     

  • Marcuzzo AV, Tofanelli M, Boscolo Nata F, Gatto A, Tirelli G. Hyaluronate impact on bacterial biofilm in ENT district infections: a evaluation. APMIS. 2017;125(9):763–72. https://doi.org/10.1111/apm.12728.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheeseman S, Elbourne A, Kariuki R, Ramarao AV, Zavabeti A, Syed N, Christofferson AJ, Kwon KY, Jung W, Dickey MD, et al. Broad-spectrum therapy of bacterial biofilms utilizing magneto-responsive liquid steel particles. J Mater Chem B. 2020;8(47):10776–87. https://doi.org/10.1039/d0tb01655a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elbourne A, Cheeseman S, Atkin P, Truong NP, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville CF, et al. Antibacterial liquid metals: biofilm therapy magnetic activation. ACS Nano. 2020;14(1):802–17. https://doi.org/10.1021/acsnano.9b07861.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: a really perfect platform for the synthesis of two-dimensional supplies. Chem Soc Rev. 2022;51(4):1253–76. https://doi.org/10.1039/d1cs01166a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahin M, Munir Ok, Wen C, Li Y. Magnesium matrix nanocomposites for orthopedic purposes: a evaluation from mechanical, corrosion, and organic views. Acta Biomater. 2019;96:1–19. https://doi.org/10.1016/j.actbio.2019.06.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Geng L, Yu Y, Zhang Y, Zhao B, Zhao Q. Mechanisms of the improved antibacterial impact of Ag–TiO coatings. Biofouling. 2018;34(2):190–9. https://doi.org/10.1080/08927014.2017.1423287.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi AS, Singh P, Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind inhibition and resistance. Int J Mol Sci. 2020;21(20):7658. https://doi.org/10.3390/ijms21207658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal purposes. Mater Immediately Bio. 2023;18: 100540. https://doi.org/10.1016/j.mtbio.2022.100540.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, Bromley M, Brüggemann R, Garber G, Cornely OA, et al. Tackling the rising risk of antifungal resistance to human well being. Nat Rev Microbiol. 2022;20(9):557–71. https://doi.org/10.1038/s41579-022-00720-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Bai M, Du R, Wang H, Deng Y, Xiao A, Gan X. The non-viral vectors and primary strategies of loading siRNA onto the titanium implants and their utility. J Biomater Sci Polym Ed. 2020;31(16):2152–68. https://doi.org/10.1080/09205063.2020.1793706.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in well being and osteoporosis. Micron. 2005;36(7–8):630–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jäger M, Jennissen HP, Dittrich F, Fischer A, Köhling HL. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Supplies. 2017;10(11):1302. https://doi.org/10.3390/ma10111302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey C, Rokaya D, Bhattarai BP. Up to date ideas in osseointegration of dental implants: a evaluation. Biomed Res Int. 2022;2022:6170452. https://doi.org/10.1155/2022/6170452.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Zou Q, Man Y, Li W. Synergistic results of novel superparamagnetic/upconversion HA materials and Ti/magnet implant on organic efficiency and long-term in vivo monitoring. Small. 2019;15(31): e1901617. https://doi.org/10.1002/smll.201901617.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattarai G, Lee Y-H, Lee N-H, Park I-S, Lee M-H, Yi H-Ok. PPARγ delivered by Ch-GNPs onto titanium surfaces inhibits implant-induced irritation and induces bone mineralization of MC-3T3E1 osteoblast-like cells. Clin Oral Implants Res. 2013;24(10):1101–9. https://doi.org/10.1111/j.1600-0501.2012.02517.x.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang ZJ, Wang YK, Teng WSY, Zhou XZ, Ye YX, Zhou H, Solar HX, Wang FQ, Liu A, Lin P, et al. An orthobiologics-free technique for synergistic photocatalytic antibacterial and osseointegration. Biomaterials. 2021;274:17. https://doi.org/10.1016/j.biomaterials.2021.120853.

    Article 
    CAS 

    Google Scholar
     

  • Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state-of-the-art and future views. Int Orthop. 2019;43(3):539–51. https://doi.org/10.1007/s00264-018-4274-3.

    Article 
    PubMed 

    Google Scholar
     

  • Salamanna F, Gambardella A, Contartese D, Visani A, Fini M. Nano-based biomaterials as drug supply methods in opposition to osteoporosis: a scientific evaluation of preclinical and medical proof. Nanomaterials. 2021;11(2):530. https://doi.org/10.3390/nano11020530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuzyk PR, Schemitsch EH. The science {of electrical} stimulation remedy for fracture therapeutic. Indian J Orthop. 2009;43(2):127–31. https://doi.org/10.4103/0019-5413.50846.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caliogna L, Medetti M, Bina V, Brancato AM, Castelli A, Jannelli E, Ivone A, Gastaldi G, Annunziata S, Mosconi M, et al. Pulsed electromagnetic fields in bone therapeutic: molecular pathways and medical purposes. Int J Mol Sci. 2021;22(14):7403. https://doi.org/10.3390/ijms22147403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Bartolomeo M, Cavani F, Pellacani A, Grande A, Salvatori R, Chiarini L, Nocini R, Anesi A. Pulsed electro-magnetic discipline (PEMF) impact on bone therapeutic in animal fashions: a evaluation of its efficacy associated to completely different kind of injury. Biology. 2022;11(3):402. https://doi.org/10.3390/biology11030402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobato RPB, Kinalski MDA, Martins TM, Agostini BA, Bergoli CD, Dos Santos MBF. Affect of low-level laser remedy on implant stability in implants positioned in contemporary extraction sockets: a randomized medical trial. Clin Implant Dent Relat Res. 2020;22(3):261–9. https://doi.org/10.1111/cid.12904.

    Article 
    PubMed 

    Google Scholar
     

  • Guzzardella GA, Torricelli P, Nicoli-Aldini N, Giardino R. Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative examine. Clin Oral Implants Res. 2003;14(2):226–32.

    Article 
    PubMed 

    Google Scholar
     

  • Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes improve electrochemical properties of titanium to find out in situ bone formation. Nanotechnology. 2008;19(29): 295101. https://doi.org/10.1088/0957-4484/19/29/295101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Jin G, Xue Y, Wang D, Liu X, Solar J. Multifunctions of twin Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and micro organism inhibition for dental implants. Acta Biomater. 2017;49:590–603. https://doi.org/10.1016/j.actbio.2016.11.067.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial exercise and elevated bone marrow stem cell features of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904–15. https://doi.org/10.1016/j.actbio.2011.09.031.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Impolite RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J. Dietary magnesium discount to 25% of nutrient requirement disrupts bone and mineral metabolism within the rat. Bone. 2005;37(2):211–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapuano BE, Hackshaw KM, Schniepp HC, MacDonald DE. Results of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers within the MC3T3 osteoprogenitor cell line. Int J Oral Maxillofac Implants. 2012;27(5):1081–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai M, Jin Z, Su Z. Floor modification of TiO nanotubes with osteogenic progress peptide to boost osteoblast differentiation. Mater Sci Eng C. 2017;73:490–7. https://doi.org/10.1016/j.msec.2016.12.083.

    Article 
    CAS 

    Google Scholar
     

  • Xu T, Luo Y, Wang J, Zhang N, Gu C, Li L, Qian D, Cai W, Fan J, Yin G. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture therapeutic by focusing on Smad5. J Nanobiotechnol. 2020;18(1):47. https://doi.org/10.1186/s12951-020-00601-w.

    Article 
    CAS 

    Google Scholar
     

  • Huang Y, Zheng Y, Xu Y, Li X, Zheng Y, Jia L, Li W. Titanium surfaces functionalized with siMIR31HG promote osteogenic differentiation of bone marrow mesenchymal stem cells. ACS Biomater Sci Eng. 2018;4(8):2986–93. https://doi.org/10.1021/acsbiomaterials.8b00432.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Ok, Jiang Z, Miao X, Yu Z, Du X, Lai Ok, Wang Y, Yang G. circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells throughout early osseointegration by means of the SP7/LRP5 axis. Mol Ther. 2022. https://doi.org/10.1016/j.ymthe.2022.05.020.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Z, Tao BL, He Y, Mu CY, Liu GH, Zhang JX, Liao Q, Liu P, Cai KY. Distant eradication of biofilm on titanium implant through near-infrared gentle triggered photothermal/photodynamic remedy technique. Biomaterials. 2019;223:15. https://doi.org/10.1016/j.biomaterials.2019.119479.

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles